Home > Practice > Arithmetic Aptitude > Permutations and Combinations > Miscellaneous
1. The letter of the word LABOUR are permuted in all possible ways and the words thus formed are arranged as in a dictionary. What is the rank of the word LABOUR?
Now, with A in the beginning, the remaining letters can be permuted in 5! ways.
Similarly, with B in the beginning, the remaining letters can be permuted in 5! ways.
With L in the beginning, the first word will be LABORU, the second will be LABOUR.
Hence, the rank of the word LABOUR is,
5! + 5! + 2 = 120 + 120 + 2 = 242
Note: 5! = 5 × 4 × 3 × 2 × 1 = 120
Solution:
The order of each letter in the dictionary is ABLORU.Now, with A in the beginning, the remaining letters can be permuted in 5! ways.
Similarly, with B in the beginning, the remaining letters can be permuted in 5! ways.
With L in the beginning, the first word will be LABORU, the second will be LABOUR.
Hence, the rank of the word LABOUR is,
5! + 5! + 2 = 120 + 120 + 2 = 242
Note: 5! = 5 × 4 × 3 × 2 × 1 = 120