Home > Practice > Arithmetic Aptitude > Surds and Indices > Miscellaneous
11. (243)n/5×32n+19n×3n1=?

Discuss
Solution:
GivenExpression=(243)n/5×32n+19n×3n1=(35)n/5×32n+1(32)n×3n1=(35×(n/5)×32n+1)(32n×3n1)=3n×32n+132n×3n1=3(n+2n+1)3(2n+n1)=33n+133n1=3(3n+13n+1)=32=9
12. 11+a(nm)+11+a(mn)=?

Discuss
Solution:
11+a(nm)+11+a(mn)=1(1+anam)+1(1+aman)=am(am+an)+an(am+an)=(am+an)(am+an)=1
13. If m and n are whole numbers such that mn = 121, the value of (m - 1)n + 1 is:

Discuss
Solution:
We know that 112 = 121.
Putting m = 11 and n = 2, we get:
(m - 1)n + 1 = (11 - 1)(2 + 1) = 103 = 1000
14. (xbxc)(b+ca).   (xcxa)(c+ab).   (xaxb)(a+bc)   = ?

Discuss
Solution:
Given Exp.=x(bc)(b+ca).x(ca)(c+ab).x(ab)(a+bc)
  =x(bc)(b+c)a(bc).    x(ca)(c+a)b(ca).   x(ab)(a+b)c(ab)
=x(b2c2+c2a2+a2b2).xa(bc)b(ca)c(ab)=x0.x(ab+acbc+baca+cb)=(x0×x0)=(1×1)=1
15. If x=3+22,    then the value of (x1x)   is:

Discuss
Solution:
(x1x)2=x+1x2=(3+22)+1(3+22)2=(3+22)+1(3+22)×(322)(322)2=(3+22)+(322)2=4(x1x)=2
16. Simplify : (32+3223253)=?

Discuss
Solution:
32+3223253=3(23)2(2+3)(2+3)(23)253=633423(2+3)(23)(253)=253253=1
17. (8 - 4 - 2) Equals to = ?

Discuss
Solution:
(842)=2222=2222=2(21)2=22
18. (64)23×(14)2    is equal to ?

Discuss
Solution:
6423×(14)2=(43)23×(14)2=42×(14)2=(14)2×(14)2=(14)22=(14)0=1
19. The value of (92×184316)   is = ?

Discuss
Solution:
(92×184316)=92×(9×2)4316=(32)2×(32)4×24316=34×38×24316=3(4+8)×24316=312×24316=243(1612)=2434=1681
20. [43×54]÷45=?

Discuss
Solution:
43×5445=544(53)=5442=62516=39.0625