Home > Practice > Arithmetic Aptitude > Surds and Indices > Miscellaneous
61. (11.4+14.7+17.10+110.13+113.16)        is equal to = ?

Discuss
Solution:
(11.4+14.7+17.10+110.13+113.16)
Formula :
1Difference denominator value×     [1First value1Last value]
=13× [114+1417+17110+110113+113116]
=13×[1116]=13×1516=516
62. Given that 5 = 2.236 and 3 = 1.732, then the value of 15+3 is = ?

Discuss
Solution:
15+3×5353=5353=2.2361.7322=0.5042=0.252
63. If (35)3(35)6=(35)2x1     then x is equal to ?

Discuss
Solution:
 (35)3(35)6=(35)2x1 (35)(36)=(35)2x1 (35)3=(35)2x12x1=32x=2x=1
64. If 55×53÷532 = 5a+2     then the value of a is = ?

Discuss
Solution:
55×53÷532 = 5a+25×512×53532=5a+25(1+12+3+32)=5a+256=5a+2a+2=6a=4
65. if 2x=323   then x is equal to = ?

Discuss
Solution:
2x=3232x=(32)13=(25)13x=53
66. 12+12+12+.....      is equal to = ?

Discuss
Solution:
12+12+12+.....
(3, 4) are the factor of 4
If there is '+' in   Answer is Highest value
If there is '-' in   Answer is lowest value.
So the answer is 4
67. If 5(x+3) = 25(3x4)    then the value of x is = ?

Discuss
Solution:
5(x+3) = 25(3x4)5(x+3) = (52)(3x4)5(x+3) = 52(3x4)5(x+3) = 5(6x8)x+3=6x85x=11x=115
68. 2n+42(2n)2(2n+3)    when simplified is = ?

Discuss
Solution:
2n+42(2n)2(2n+3) =2n+42n+12n+4 =2n+42n+42n+12n+4 =12(n+1)(n+4) = 123 = 118  = 78
69. If a=5+151   and b = 515+1   then the value of (a2+ab+b2a2ab+b2)    is = ?

Discuss
Solution:
a+b=5+151+515+1=(5+1)2+(51)2(51)(5+1)=2[(5)2+1]51=2(5+1)4=3a.b=5+151×515+1=1Put value in expressiona2+ab+b2a2ab+b2=(a+b)2ab(a+b)23ab=321323=9193=43
70. 61.2×36?×302.4×251.3=305

Discuss
Solution:
Let 61.2×36x×302.4×251.3=305Then,61.2×(62)x×(6×5)2.4×(52)1.3=30561.2×62x×62.4×52.4×52.6=(6×5)56(1.2+2x+2.4)×5(2.4+2.6)=65×556(3.6+2x)×55=65×553.6+2x=52x=1.4x=0.7