Home > Practice > Arithmetic Aptitude > Logarithms > Miscellaneous
11. If log 2 = 0.30103, the number of digits in 264 is:

Discuss
Solution:
log(264)=64×log2=(64×0.30103)=19.26592
Its characteristic is 19.
Hence, then number of digits in 264 is 20.
12. If logx(916)=12,    then x is equal to:

Discuss
Solution:
logx(916)=12x12=9161x=916x=169x=(169)2x=25681
13. If ax = by, then:

Discuss
Solution:
ax=bylogax=logbyxloga=ylogblogalogb=yx
14. If logx y = 100 and log2 x = 10, then the value of y is:

Discuss
Solution:
log2x=10x=210logxy=100y=x100y=(210)100[putvalueofx]y=21000
15. The value of log2 16 is:

Discuss
Solution:
Let log2 16 = n.
Then, 2n = 16 = 24⇒ n = 4
∴ log2 16 = 4
16. The value of log5(125)(625)25    is equal to -

Discuss
Solution:
log5(125)(625)25=log5(53×5452)=log555 = 5log55=5
17. Determine the value of log32(118)   is = ?

Discuss
Solution:
log32(118)=log32(1(32)2)=log32 (32)2=(2)log3232=2
18. The value of log10(0.0001)   is = ?

Discuss
Solution:
log10(0.0001)=log10(110000)=log10(1104)=log10104=4log1010=4 
19. What is the value of [log10(5log10100)]2     = ?

Discuss
Solution:
[log10(5log10100)]2=[log10{5log10(10)2}]2=[log10(5×2)]2=(log1010)2=1
20. If log8p=25   and log2q=5,   then -

Discuss
Solution:
log8p=25and log2q=5p = 825and q=25p = (23)25 and q = 25p = 275 and q = 25p = (25)15 and q = 25 p = q15