Home > Practice > Arithmetic Aptitude > Logarithms > Miscellaneous
21. If log10000x=14,    then the value of x is = ?

Discuss
Solution:
let log10000x=14x=(10000)14=(104)14=101=110
22. log8log8is equal to = ?

Discuss
Solution:
log8log8=log(8)12log8=12log8log8=12
23. The value of 6 log1010003 log10100   is equal to -

Discuss
Solution:
6 log1010003 log10100=6 log101033 log10102=6×3 log10103×2 log1010=186=3
24. If log2[log3(log2x)]=1,     then x is equal to = ?

Discuss
Solution:
log2[ log3( log2x)]=1log3(log2x)=21=2log2x=32=9x=29=512
25. What is the value of the following expression?
log(914)   log(1516)+   log(3524)

Discuss
Solution:
log(914)log(1516)+log(3524)=log(914÷1516×3524)=log(914×1615×3524)=log1=0
26. 2log105+  log108  12log104   = ?

Discuss
Solution:
2log105+log10812log104=log10(52)+log108log10(412)=log1025+log108log102=log10(25×82)=log10100=2
27. If loga(ab)=x,   then logb(ab)   is -

Discuss
Solution:
loga(ab)=xlogabloga=xloga+logbloga=x1+logbloga=xlogbloga=x1logalogb=1x11+logalogb=1+1x1logblogb+logalogb=xx1logb+logalogb=xx1log(ab)logb=xx1logb(ab)=xx1
28. If log102=a  and log103=b,   then log512 = ?

Discuss
Solution:
log512=log5(3×4)=log53+log54=log53+2log52=log103log105+2log102log105
=log103log1010log102   +2log102log1010log102
=b1a+2a1a=2a+b1a
29. If log10125+log108=x,     then x is equal to -

Discuss
Solution:
log10125+log108=xlog10(125×8)=xx=log10(1000)x=log10(10)3x=3log1010x=3
30. If log5(x2+x)   log5(x+1)   = 2, then the value of x is -

Discuss
Solution:
log5(x2+x)log5(x+1)=2log5(x2+xx+1)=2log5[x(x+1)x+1]=2log5x=2x=52=25