Home > Practice > Arithmetic Aptitude > Logarithms > Miscellaneous
41. If the logarithm of a number is - 3.153, what are characteristic and mantissa?

Discuss
Solution:
let logx=3.153then, logx=3.153=3+(0.153)=(31)+(10.153)=4+0.847=4¯.847Hence,characteristic = - 4, mantissa = 0.847 
42. If log2=0.30103,    the number of digits in 450 is -

Discuss
Solution:
log450=50log4=50log22=(50×2)log2=100×log2=(100×0.30103)=30.103characteristic=30,
Hence, the number of digits in 450=31
43. The number of digits in 49×517,   when expressed in usual form, is -

Discuss
Solution:
log(49×517)=log(49)+log(517)=log(22)9+log(517)=log(218)+log(517)=18log2+17log5=18log2+17(log10log2)=18log2+17log1017log2=log2+17log10=0.3010+17×1=17.3010Characteristic=17Hence, the number of digits in (49×517)=18
44. If log3log(3x2)   and log(3x+4)   are in arithmetic progression, then x is equal to

Discuss
Solution:
In arithmetic progression common ratio are equal to
log(3x2)log3=     log(3x+4)   log(3x2)
log(3x2)log3=log(3x+4)log(3x2)     (logalogb=logab)
log3xlog2log3=xlog3log4log2xlog3xlog3log2log3=xlog3log4log2xlog3xlog2=log4log2x=log4log2log2x=log8x=log23
45. If log10a=p,   log10b=q,   then what is log10(apbq)   equal to?

Discuss
Solution:
Given,log10a=p,log10b=qlog10(apbq)=log10ap+log10bq=plog10a+qlog10b=p2+q2