Home > Practice > Arithmetic Aptitude > Logarithms > Miscellaneous
31. If logab+logba=   log(a+b),   then -

Discuss
Solution:
logab+logba=log(a+b)log(a+b)=log(ab×ba)log(a+b)=log1So,a+b=1
32. log(a2bc)+   log(b2ac)+   log(c2ab)   is equal to -

Discuss
Solution:
GivenExpression = log(a2bc×b2ac×c2ab)=log1=0
33. 1logab×1logbc×1logca     is equal to -

Discuss
Solution:
GivenExpression(logalogb×logblogc×logcloga)=1
34. 1(logabc)+1+   1(logbca)+1+   1(logcab)+1   is equal to -

Discuss
Solution:
GivenExpression=1logabc+logaa+1logbca+logbb+1logcab+logcc=1loga(abc)+1logb(abc)+1logc(abc)=logabca+logabcb+logabcc=logabc(abc)=1
35. If log107=a,   then log10(170)   is equal to -

Discuss
Solution:
log10(170)=log101log1070=log10(7×10)=(log107+log1010)=(a+1)
36. If logx5log3=2,     then x equals -

Discuss
Solution:
logx5log3=2logxlog35=2log(x35)=2x243=102=1100x=243100=2.43
37. If a=b2=c3=d4,    then the value of loga(abcd)   would be -

Discuss
Solution:
a=b2=c3=d4b=a12,c=a13,d=a14loga(abcd)=loga(a×a12×a13×a14)=logaa(1+12+13+14)=(1+12+13+14)logaa=1+12+13+14
38. If log3x+log9x2+log27x3     =9,  then x equals to -

Discuss
Solution:
log3x+log9x2+log27x3=9log3x+log32x2+log33x3=9log3x+22log3x+33log3x=93log3x=9log3x=3x=33=27
39. If log7log5(x+5+x)     =0,  what is the value of x ?

Discuss
Solution:
log7log5(x+5+x)=0log5(x+5+x)=70=1x+5+x=51=5(x+5+x)2=25(x+5)+x+2x+5x=252x+2xx+5=20xx+5=10xx(x+5)=(10x)2x2+5x=100+x220x25x=100x=4
40. If log2=0.3010   and log3=0.4771,   the value of log5512   = ?

Discuss
Solution:
log5512=log512log5=log29log(102)=9log2log10log2=(9×0.3010)10.3010=2.7090.699=2709699=3.876