Home > Practice > Arithmetic Aptitude > Logarithms > Miscellaneous
1. Which of the following statements is not correct?

Discuss
Solution:
A = Since logaa=1, so log1010=1B=log(2+3)=5and log(2×3)=log6=log2+log3log(2+3)log(2×3).C= Since loga1=0,so log101=0.D = log(1+2+3)= log6= log(1×2×3)= log1+ log2+ log3.So (B) is incorrect
2. If log 2 = 0.3010 and log 3 = 0.4771, the value of log5 512 is:

Discuss
Solution:
log5512=log512log5=log29log(102)=9log2log10log2=9×0.301010.3010=2.7090.699=2709699=3.876
3. log8log8  is equal to:

Discuss
Solution:
log8log8=log(8)log812=12log8log8=12
4. If log 27 = 1.431, then the value of log 9 is:

Discuss
Solution:
log27=1.431log(33)=1.4313log3=1.431log3=0.477log9=log(32)=2log3=2×0.477=0.954
5. Iflogab+logba=log(a+b),      then:

Discuss
Solution:
logab+logba=log(a+b)log(a+b)=log(ab×ba)=log1So,a+b=1
6. If log107=a,   then log10(170)   is equal to

Discuss
Solution:
log10(170)=log101log1070=log10(7×10)=(log107+log1010)=(a+1)
7. If log10 2 = 0.3010, then log2 10 is equal to:

Discuss
Solution:
log210=1log102=10.3010=100003010=1000301
8. If log10 2 = 0.3010, the value of log10 80 is:

Discuss
Solution:
log1080=log10(8×10)=log108+log1010=log10(23)+1=3log102+1=(3×0.3010)+1=1.9030
9. If log105+log10(5x+1)     = log10 (x+5) + 1, then x is equal to :

Discuss
Solution:
log105+log10(5x+1)=log10(x+5)+1log10[5(5x+1)]=log10[10(x+5)]5(5x+1)=10(x+5)5x+1=2x+103x=9x=3
10. The value of 1log360+  1log460+  1log560   is :

Discuss
Solution:
Given expression
=log603+log604+log605=log60(3×4×5)=log6060=1